丙戊酸致肝毒性影响因素及早期预警标志物研究进展

章静欣, 赵明明, 郭帅帅, 肇丽梅

中国药学杂志 ›› 2021, Vol. 56 ›› Issue (24) : 1957-1961.

PDF(1157 KB)
PDF(1157 KB)
中国药学杂志 ›› 2021, Vol. 56 ›› Issue (24) : 1957-1961. DOI: 10.11669/cpj.2021.24.001
综述

丙戊酸致肝毒性影响因素及早期预警标志物研究进展

  • 章静欣, 赵明明, 郭帅帅, 肇丽梅*
作者信息 +

A Systematic Review on Risk Factors and Biomarkers of Valproic Acid for Early Warning of Hepatotoxicity

  • ZHANG Jing-xin, ZHAO Ming-ming, GUO Shuai-shuai, ZHAO Li-mei*
Author information +
文章历史 +

摘要

丙戊酸为一线广谱抗癫痫药物,临床应用广泛,丙戊酸致肝毒性是其严重不良反应之一,且受患者年龄、联合用药及基因多态性等因素影响,如何早期预警丙戊酸致肝毒性已成为临床治疗中亟待解决的问题。笔者主要综述了影响丙戊酸致肝毒性的危险因素、丙戊酸致肝毒性生物标志物研究进展,为丙戊酸的临床应用及相关研究提供参考。

Abstract

Valproic acid is a first-line broad-spectrum antiepileptic drug, which is widely used in clinic. Hepatotoxicity caused by valproic acid is one of its serious adverse reactions, and affected by patient age, combined medication and gene polymorphism. During valproic acid treatment, how to prevent the occurrence of liver toxicity in the early stage has become the focus of research. This paper reviews the risk factors of valproic acid induced hepatotoxicity and the research progress of biomarkers of valproic acid induced hepatotoxicity, so as to provide reference for the clinical application and related research of valproic acid.

关键词

丙戊酸 / 肝毒性 / 风险因素 / 生物标志物

Key words

valproate acid / hepatotoxicity / risk factor / biomarker

引用本文

导出引用
章静欣, 赵明明, 郭帅帅, 肇丽梅. 丙戊酸致肝毒性影响因素及早期预警标志物研究进展[J]. 中国药学杂志, 2021, 56(24): 1957-1961 https://doi.org/10.11669/cpj.2021.24.001
ZHANG Jing-xin, ZHAO Ming-ming, GUO Shuai-shuai, ZHAO Li-mei. A Systematic Review on Risk Factors and Biomarkers of Valproic Acid for Early Warning of Hepatotoxicity[J]. Chinese Pharmaceutical Journal, 2021, 56(24): 1957-1961 https://doi.org/10.11669/cpj.2021.24.001
中图分类号: R969.3   

参考文献

[1] TSIROPOULOS I, ANDERSEN M, HALLAS J. Adverse events with use of antiepileptic drugs:a prescription and event symmetry analysis. Pharmacoepidemiol Drug Saf, 2009, 18(6):483-491.
[2] FARINELLI E, GIAMPAOLI D, CENCIARINI A, et al. Valproic acid and nonalcoholic fatty liver disease: a possible association?. World J Hepatol, 2015, 7(9):1251-1257.
[3] NAGAI G, ONO S, YASUI-FURUKORI N, et al. Formulations of valproate alter valproate metabolism:a single oral dose kinetic study. Ther Drug Monit, 2009, 31(5):592-596.
[4] KODAMA Y, KODAMA H, KURANARI M, et al. No effect of gender or age on binding characteristics of valproic acid to serum proteins in pediatric patients with epilepsy. J Clin Pharmacol, 1999, 39(10):1070-1076.
[5] SUZUKI Y, ITOH H, ABE T, et al. No effect of co-administered antiepileptic drugs on in-vivo protein binding parameters of valproic acid in patients with epilepsy. J Pharm Pharmacol, 2011, 63(7):976-981.
[6] VIDAURRE J, GEDELA S, YAROSZ S. Antiepileptic drugs and liver disease. Pediatr Neurol, 2017, 77:23-36.
[7] KIANG T K, TENG X W, KARAGIOZOV S, et al. Role of oxidative metabolism in the effect of valproic acid on markers of cell viability, necrosis, and oxidative stress in sandwich-cultured rat hepatocytes. Toxicol Sci, 2010, 118(2):501-509.
[8] DREIFUSS F E, SANTILLI N, LANGER D H, et al. Valproic acid hepatic fatalities:a retrospective review. Neurology, 1987, 37(3):379-385.
[9] DIPAOLA F, MOLLESTON J P, GU J, et al. Antimicrobials and antiepileptics are the leading causes of idiosyncratic drug-induced liver injury in american Children. J Pediatr Gastroenterol Nutr, 2019, 69(2):152-159.
[10] TULLOCH J K, CARR R R, ENSOM M H. A systematic review of the pharmacokinetics of antiepileptic drugs in neonates with refractory seizures. J Pediatr Pharmacol Ther, 2012, 17(1):31-44.
[11] STAR K, EDWARDS I R, Choonara I. Valproic acid and fatalities in children:a review of individual case safety reports in VigiBase. PLoS One, 2014, 9(10):e108970.
[12] O'SULLIVAN A, GIBNEY M J, BRENNAN L. Dietary intake patterns are reflected in metabolomic profiles:potential role in dietary assessment studies. Am J Clin Nutr, 2011, 93(2):314-321.
[13] MISRA A, SINGHAL N, KHURANA L. Obesity, the metabolic syndrome, and type 2 diabetes in developing countries:role of dietary fats and oils. J Am Coll Nutr, 2010, 29(Suppl 3):S289-S301.
[14] SATHIYA P C, BHAVANI K, ANURADHA C V. High-calorie diet inflates steatogenic effects of valproic acid in mice. Toxicol Mech Methods, 2016, 26(2):112-121.
[15] NGUYEN K V, SHARIEF F S, CHAN S S, et al. Molecular diagnosis of Alpers syndrome. J Hepatol, 2006, 45(1):108-116.
[16] SANETO R P, COHEN B H, COPELAND W C, et al. Alpers-Huttenlocher syndrome. Pediatr Neurol, 2013, 48(3):167-178.
[17] HORVATH R, HUDSON G, FERRARI G, et al. Phenotypic spectrum associated with mutations of the mitochondrial polymerase gamma gene. Brain, 2006, 129(Pt 7):1674-1684.
[18] KIANG T K, HO P C, ANARI M R, et al. Contribution of CYP2C9, CYP2A6, and CYP2B6 to valproic acid metabolism in hepatic microsomes from individuals with the CYP2C9*1/*1 genotype. Toxicol Sci, 2006, 94(2):261-271.
[19] AMINI-SHIRAZI N, GHAHREMANI M H, AHMADKHANIHA R, et al. Influence of CYP2C9 polymorphism on metabolism of valproate and its hepatotoxin metabolite in Iranian patients. Toxicol Mech Methods, 2010, 20(8):452-457.
[20] ZHAO M, ZHANG T, LI G, et al. Associations of CYP2C9 and CYP2A6 polymorphisms with the concentrations of valproate and its hepatotoxin metabolites and valproate-induced hepatotoxicity. Basic Clin Pharmacol Toxicol, 2017, 121(2):138-143.
[21] STEWART JD, HORVATH R, BARUFFINI E, et al. Polymerase γ gene POLG determines the risk of sodium valproate-induced liver toxicity. Hepatology, 2010, 52(5):1791-1796.
[22] HYNYNEN J, POKKA T, KOMULAINEN-EBRAHIM J, et al. Variants p. Q1236H and p. E1143G in mitochondrial DNA polymerase gamma POLG1 are not associated with increased risk for valproate-induced hepatotoxicity or pancreatic toxicity:a retrospective cohort study of patients with epilepsy. Epilepsia, 2018, 59(11):2125-2136.
[23] ATEL A R, NAGALLI S. Valproate toxicity. Treasure Island (FL): StatPearls Publishing LLC., 2021 (2021-07-26). https://www. ncbi.nlm.nih.gov/books/NBK560898/.
[24] OGUSU N, SARUWATARI J, NAKASHIMA H, et al. Impact of the superoxide dismutase 2 Val16Ala polymorphism on the relationship between valproic acid exposure and elevation of gamma-glutamyltransferase in patients with epilepsy:a population pharmacokinetic-pharmacodynamic analysis. PLoS One, 2014, 9(11):e111066.
[25] SARUWATARI J, DEGUCHI M, YOSHIMORI Y, et al. Superoxide dismutase 2 Val16Ala polymorphism is a risk factor for the valproic acid-related elevation of serum aminotransferases. Epilepsy Res, 2012, 99(1-2):183-186.
[26] MA L, PAN Y, SUN M, et al. Catalase C-262T polymorphism is a risk factor for valproic acid-induced abnormal liver function in Chinese patients with epilepsy. Ther Drug Monit, 2019, 41(1):91-96.
[27] HAUSER E, SEIDL R, FREILINGER M, et al. Hematologic manifestations and impaired liver synthetic function during valproate monotherapy. Brain Dev, 1996, 18(2):105-109.
[28] MEUNIER L, LARREY D. Drug-induced liver injury: biomarkers, requirements, candidates, and validation. Front Pharmacol, 2019, 10:1482.
[29] CHEN Y, ZHOU J, XU S, et al. Association between the perturbation of bile acid homeostasis and valproic acid-induced hepatotoxicity. Biochem Pharmacol, 2019, 170:113669.
[30] XU S, CHEN Y, MA Y, et al. Lipidomic profiling reveals disruption of lipid metabolism in valproic acid-induced hepatotoxicity. Front Pharmacol, 2019, 10:819.
[31] GODA K, SAITO K, MUTA K, et al. Ether-phosphatidylcholine characterized by consolidated plasma and liver lipidomics is a predictive biomarker for valproic acid-induced hepatic steatosis. J Toxicol Sci, 2018, 43(6):395-405.
[32] LI Z Y, LIU Y, WANG D Z, et al. Clinical significance of the changes of amino acid in children with epilepsy on valproate monotherapy. J Mod Lab Med(现代检验医学杂志), 2017, 32(5):24-27.
[33] LEE M S, JUNG B H, CHUNG B C, et al. Metabolomics study with gas chromatography-mass spectrometry for predicting valproic acid-induced hepatotoxicity and discovery of novel biomarkers in rat urine. Int J Toxicol, 2009, 28(5):392-404.
[34] FERNANDES-FREITAS I, OWEN B M. Metabolic roles of endocrine fibroblast growth factors. Curr Opin Pharmacol, 2015, 25:30-35.
[35] SALMINEN A, KAARNIRANTA K, KAUPPINEN A. Regulation of longevity by FGF21:Interaction between energy metabolism and stress responses. Ageing Res Rev, 2017, 37:79-93.
[36] YANG C, LU W, LIN T, et al. Activation of Liver FGF21 in hepatocarcinogenesis and during hepatic stress. BMC Gastroenterol, 2013, 13:67.
[37] KIM S H, KIM K H, KIM H K, et al. Fibroblast growth factor 21 participates in adaptation to endoplasmic reticulum stress and attenuates obesity-induced hepatic metabolic stress. Diabetologia, 2015, 58(4):809-818.
[38] WOO YC, XU A, WANG Y, et al. Fibroblast growth factor 21 as an emerging metabolic regulator:clinical perspectives. Clin Endocrinol (Oxf), 2013, 78(4):489-496.
[39] XU X, GUO C, LIANG X, et al. Potential biomarker of fibroblast growth factor 21 in valproic acid-treated livers. Biofactors, 2019, 45(5):740-749.
[40] CHEN ZJ, WANG XD, WANG HS, et al. Simultaneous determination of valproic acid and 2-propyl-4-pentenoic acid for the prediction of clinical adverse effects in Chinese patients with epilepsy. Seizure, 2012, 21(2):110-117.
[41] ZHOU X, CHEN S, ZONG CF, et al. Correlation analysis of valproic acid and its metabolites to hepatotoxicity. J Pharm Pract(药学实践杂志), 2020, 38(3):273-276.
[42] YAMADA H, SUZUKI K, ICHINO N, et al. Associations between circulating microRNAs (miR-21, miR-34a, miR-122 and miR-451) and non-alcoholic fatty liver. Clin Chim Acta, 2013, 424:99-103.
[43] TONG V, TENG XW, CHANG TK, et al. Valproic acid I:time course of lipid peroxidation biomarkers, liver toxicity, and valproic acid metabolite levels in rats. Toxicol Sci, 2005, 86(2):427-435.

基金

国家自然科学基金项目资助(81703628)
PDF(1157 KB)

Accesses

Citation

Detail

段落导航
相关文章

/